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| study how the DGRDvali-Gabadadze-Porratbrane affects particle dynamics in the linearized approxi-
mation. | find that once the particle is removed from the brane it is repelled to the bulk. Assuming that the
cutoff for the gravitational interaction iM, ~1/e, | calculate the classical self-energy of a particle as the
function of its position. Since the particle wants to go to the region where its self-energy is lower, it is repelled
from the brane to the bulk where it gains its 5D self-energy. Cases when the mass of the particle
<8m?M, andm>8w2M, are qualitatively different, and in the latter case, one has to take into account the
effects of strong gravity. In both cases the particle is repelled from the branen&&m?M, | obtain the
same result from the “electrostatic” analogue of the theory. In that language the (otemge in the bulk
induces a charge distribution on the brane which shields the other side of the brane and provides a repulsive
force. The DGP brane acts as a conducting plane in electrostkéeping in mind that in gravity different
charges repel The repulsive nature of the brane requires a certain localization mechanism. When the particle
overcomes the localizing potential it rapidly moves to the bulk. Particles of mas87?M, form a black
hole within 1M, distance from the brane.
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[. INTRODUCTION hole production in this class of models. Since the particle
itself induces the metric, there is no static metric in which
A phenomenologically acceptable five-dimensional branene could study the behavior of geodesic lifgmst describe
world theory with one infinite extra dimension was recentlythe motion of the test particlelnstead of trying to solve the
developed if1-3]. The low scale of quantum gravii, is  problem in full relativistic theory, we will limit ourselves to
pulled (renormalizedl at the brane by the high scaMg,  the Newtonian approximation and use some basic facts about
that describes the brane localized standard model. More prélack holes. The result that | find is that the brane repels
cisely, the 4D Einstein Hilbert term, with a strengthM3 ~ particles into the bulk where they have a loweigger in
~M2,,, is induced on the brane. This effect ensures that thé'agnitude and negatiyself-energy. - _ .
observer on the brane sees weak 4D gragigwton con- In the next section | derive and briefly discuss Newtonian
stantGy~1/M2) up to the distance,=MZM3 . At dis- Potential. In the third section | find the dependence of self-
tances bigger than, gravity becomes five dimensional. At €Nergy of a particle as a function of its distance from the
short distances gravity is modified by quantum corrections aprane. Once the particle leaves the brane, the gradient of
M;l. Short distance gravity measurements exclude théelf—energy forces it to go from the brane o the bulk. | also
modification of the laws of gravity at distances bigger thand?SCrIbe the progess of black hole formatlon for particles
~0.1 mm-1/10"% eV [4]. Cosmological observations on with massm>87“M, . In the fourth section | present the

the other hand suggest that gravity is not changed to dis“_electrostatic” analogue derivation of repulsive force for

tances of order~10?° mm. Thus the present knowledge particles with r_nasm<87-rZ_M*. Finally, in the_discussion, I
about gravity constrains the scale of gravity in this class O]address questions regarding phenomenological consequences
models to the range of the repulsive nature of the brane.

10 % eV<M, <10 MeV. (1. Il. NEWTONIAN POTENTIAL

Relativistic corrections and the question of how are they Action for the model[1] is the sum of the 5D Einstein
encoded in the tensor structure of the graviton propagatorlilbert term and the induced 4D term on the brane
were studied irf5]. The cosmological consequences of the
model and especially the fact that the model gives rise to an 43 4 2 4
accelerated univers@s observed if6]) were considered in S= M*j d xdy\/ER(5)+MP|J d X\/HR' @1
[7]. The relevance for the solution to the cosmological con-
stant problem was considered[il Here | divide 5D coordinates into a 4D pa@Greek indicep
In the present paper | study how the induced 4D Einsteirand the extra coordinatelike X*=(x*,y), Gpg is 5D met-
Hilbert term affects the dynamics of the particle of masat  ric and R its curvature scalar,g,,(x*)=Gap(X*,y
a distancey, from the brane. This question is important in =0)6%6° is induced 4D metri¢l take straight brane located
order to identify the experimental signatures of collider blackat y=0) and R the corresponding scalar curvature. The ten-
sion of the brane is taken to be zero. If we take the limit of
slowly varying weak fields, equations of motion reduce to
*Email address: mk679@nyu.edu the equations for deviation of thgyy, component from the
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flat space constant valuscalar gravity. The equation for with constant &/#. For y/r.>1 one can find the form of

(Euclidean Green'’s function for the scalar gravity case readsthe potential by expanding EQR.4) (see the Appendjxand
again obtain the expected five-dimensional behavior. Up to a
constant, the potentials have the following short distance ex-

(Da[1+168(y)]—35) G(X—X0,Y.Yo) pansion and asymptotic behavior:
= 8*(X—X0) 8(y—Yo), (2.2
hich has the solutiorsee[3]) V(y=0yr<ro) m 1(1+2r|r>
which has the solutiofsee =0r<ry)=————— ——In—|,
Y ¢ 32’7T|\/|,3c rre mIle T¢
G L eyl — L gplyI+Iyol
(P.y:yo)= g€ 5 1+ 1rp -
(2.3 V(y=0r>ry)=— ————— 2.7)
_ , _ (y=0r=1o) 167m2M3 2’ (
Let us evaluate the exact Newtonian potential at the point
(x,y) due to a static source of masslocated at the position
(x',yo). The potential is given as a Fourier transform of the PN | 1 y. ¥y
Green’s function2.3) integrated over the time Vr=0y<re)= 16m2M2 |ylre 1+ rclnrC ’
v( ) m 1 1 m 2.8
rYy:Yo)=— - Vr=0y>r)=—————7—:. .
16m°M3 | 12+ (y—yo)2  r2+(ly|+lIyol)? (r=0y=ro) 16m°M3|y|?
_ ellyl+ Yol =i/ref T o (|y| + |yol —ir)/r] S|m|!f1r expansions can be easily obtained for a potential at
e any “angle” in ther —y plane.
If the mass is in the bulk we have two different cases. For
_ 2T Flval+ir)/r _ 24 particles on opposite sides of the brane, the first two terms in
ol Iyl *1yol ) C)]] 249 Eq. (2.4) cancel and particles interact via the weak four-

dimensional gravity at distances/([y[+[yo|)?+r2<r.
Herer =|x—x’| andI'o(z) is an incomplete gamma function That means that the brane is shielding one side of the brane
(see the Appendix The potential(2.4) can be expanded in from the five-dimensional gravitation of sources on the other
powers of 1/ : side of the brane. The effective radius of shielding-is; . If

the sources are on the same side of the brane, the interaction

is dominated by the first two terms in E¢R.4). Masses,

L m 1 r 29 sufficiently far from brane, basically interact via strong five-
Vi=—————arcta , 2. dimensional gravit
M3 rr + gravity.
167°M, e yI*+lyol One can illustrate this behavior by plotting the contours of

the constant potential of the body as it moves from the bulk
towards the brandFig. 1). At Schwarzschild radiuggg

ve__m 1 (lyl+1yol) arctan— ~(1+2V) diverges. Although | do not have a relativistic
16m2M3 e re I+ 1Yol solution to the system, one would expect that the Schwarzs-
* . .
child surfaces(black hole horizonsbehave as surfaces of
10\ r2+(ly|+]yoh? r constant potential/~ —1/2.
2\r¢ r2 le
Cc

Ill. SELF-ENERGY
(2.6) ) .
In this section | will evaluate the classical self-energy of

wherey~0.5772 is Euler’s constant and superscripts on pothe particle of massm in the presence of the Dvali-
tential denote terms in expansion. The potential to first ordeGabadadze-PorratDGP) brane. My main assumption, along
in 1/r; was discussed in detail {r8]. Let me briefly discuss the lines of[3], is that the gravity is cut off at distances
potential(2.4). If the mass is on the brang{=0), the first ~1/M, . Classically, gravitational self-energy is determined
two terms in Eq.(2.4) cancel. The potential on the brane by the cutoff distance and the form of the potential. Since the
(r,y=0), at distances<r, is four dimensional and the potential changes with the position, the gravitational self-
Newton’s constant is5=1/(327M3r ). As r/r, increases energy of a particle will be a function of its distance from the
towards one, the second term in E(.6) weakens its brane. Gradient of self-energy will give rise to a force that
strength. Finally, for>r_ (pr.<1) the potential becomes will try to move the particle to the region of lowest gravita-
purely five dimensionalthe first term in Eqs(2.3 and tional self-energy. Fom<8#?M, | will use Newtonian ap-
(2.4)]. Similar behavior occurs if one looks at the potential atproximation, since the potential is weak at the cutoff distance
(r=0,y). For smally it is a weak four-dimensional potential ~M;1. Form>8#?M, , | will use a Newton-like approxi-
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FIG. 1. Surfaces of constant potentidl=
—(1/167%)m/M,, . Point mass is orr=0, Yy,

y =1,0.5,0.2,10%,10 3,10 * in units of M *. In-
) set: anisotropic cutoff distance for a mass on
the brane.
y
0.5 1 1.5 2 2.5

mation, which will incorporate some basic facts of generalthen use Gauss’ law to relate mass density and divergence of
relativity. the field. After partial integration energy can be written as an
integral over the square of the fild~ — [|VV/(x)|?d"x. By
A. Casem<8w°M, integrating energy stored in the field in pure 4D and 5D

For m<8x2M, Schwarzschild radius in the bulkss theories one again finds expressi¢B<). | must stress here

= (1M, ) Jm/872M,, [9] is smaller than the cutof, * so that thg discussed theory is neither purely 4D or, 5D theory.
Newtonian approximation is justified. Let me remind howIn _par'gcular, for the mass on th? brane, Gauss'’ law is not
we calculate gravitational self-energy of a particle. Onevalid (if I call rs the SD radial glstar!ce from the mass at
wants to find an energy gained by assembling a particle ofo=0, then the field drops-1/r5, while the surface area
massm. Equivalently, one can find the energy needed toncreases-rg). For this reason | will use Eq3.1) when
destroy a particle by taking away infinitesimal pieces of mat-calculating self-energy of the mass at an arbitrary position in

ter and removing them to infinity, where the potential is de-5D space(one should not use Gauss’ [aw

fined to be zero. If the force starts to act at a distanf®m Let us look at the self-energy of the particle on the brane.
the center-of-mass distribution of a particle, one then findBy using prescription3.1) we find that the self-energy is
the expression for self-energy to be that of a four-dimensional particle. However, since our space

is not isotropic there is an apparent ambiguity in self-energy.
L ~dV(r) 1 It dt_apends on the _direction from which we assembled the
W:_f (1—M)dMJ dr=-V(e). (3.1) Particle. Let us define polar coordinatps-r?+y? and ¢
0 e dr 2 =arctan(/y) and assemble the particle §=0r=0 by
o bringing infinitesimal masses from infinity and directigh
In my normalization of the Newton constant, that leads tOfom the bulk. Self-energy of the particle on the brane then

self-energies in four-dimensional theofgn the brangand varies by a factorr/2 (same as the Newton constamor
five-dimensional theoryinfinitely far from the brang angles 0< ¢p< m/2:

m2

M3

Mp

T am Mg @ T

€ 3272

1 (m)zl 1

ﬂ\Nll_\

W 0) ! ( m )2 id (3.9

32 v 327% | Mef sing e |

If we take that the gravity cutofé is just an inverse scale of

gravity M, , then the ratio of self-energies in pure 4D and Since the self-energy must be a well-defined quantity, | con-

5D theories is clude that the factotp/sin ¢ defines the physical cutoff dis-

tance when the mass is on the brane. Certainly, the space in

W, 7 [M, 2 guestion is not isotropic, and | cannot assume that the gravity
WS_ P Mp cutoff surface is a 3-sphere, but rather a surface of constant

field strength with average distance from the partiel&M ,

In pure four- or five-dimensional theories energy of the masginset to Fig. 1. For the arbitrary position of particlg,, the

density p(x) is given byW=(1/2)[p(x)V(x)d"x. One can expression for self-energy to first order irr lis

(3.3
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cutoff. This contribution is equal toWg(m=M,)=
—M, /(327%). Work gained in bringing the rest of the mass
(from M, to m) would be the work done in bringing it only

1 ) to the Schwarzschild radius. Outside the horizon there is no

m2

M3

1
3272

W(yo)=—

1

62( - 1+4(yo/€)?+4(yol €)cosd

1 1 . esing
+— =
ree smqﬁarca 2yo+ €COS

change in energy no matter how the potential changes below
the horizon. Now | introduce a loose definition of the
Schwarzschild radius as a radius at which Newtonian poten-
(3.5 tial has the value- 1/2. Since the potential energy gained by
bringing the masslM from infinity to Schwarzschild radius

is by (our) definition dM/2, the total self-energy of a 5D
For yo> €, dependence o can be neglected and the self- plack hole of massn is

energy has the form

1 (m
W(m>M*,y0—>00)=W5(m=M*)—§j dM
W(yo)=Ws| 1— +W, . (3.6 My
o 5( 1+4(y0/e)2> ‘ol &9 L
For 0<y,< € (neglecting the small t{ contribution of 4D - 39772 My = E(m_ M. (3.8

self-energy, one gets the same answer by following argu-
ment. The first term in Eq3.5) represents isotropic 5D in-

teraction and should be cut off at the surface of three sp_herl% our simplified model of a black hole, self-energy is nega-
of radiuse. The second term is an anisotropic contribution

and its cutoff has to be defined so that it does not depend otﬁve and of the order offactor of 1/2) the mass of a black

the angleg. If | define the(angle dependent cutoff for the hple. It is interesting to note that self-energy could, in prin-

second term a&2= e2f(y, /e, ) one finds thatf (yo/e, ) ciple, be equal to the rest mass so that it would not cost
! ' thing t d it. The situation i ini t of th

[ —2(ys/€)cosdr 1+ 4(yse)2c0Zd]. Plugging this anything to produce i e situation is reminiscent of the

. ; . fact that the total mass of the universe, Newton’s constant,
baqk to Eq.(3.5) one obtains the behavior of the 5D contri- and the Hubble radius conspire in such a way that it might
bution as in Eq(3.6).

To summarize, at the brane, the particle has 4D Self_not cost anything to create particles at the center of the uni-

energy, upon leaving the brane, within a couple distance, verse, since their rest mass energy is of the order of their

S ; : ; itational(negative energy.
it gains the biggest part of its 5D self-energy and looses igravt :
4D self-energy. The particle h> e will feel strong force Let us see how the formation of the black hole happens as

| remove a particle of mass>87?M, from the brane. On

S dW(yo) 1 m_zi 1_& - the brane, the Schwarzschild.radiugﬁ:M;ﬁ(m/Mm) is
y(Yo)= Tdyo 642 M3 y2 ro)” : much smaller than the cutoff distanbé, ~. For that reason

the self energy on the brane is given W [Eqg. (3.2)]. The
self-energy on the brane is much smaller than the self-energy
r away from the bran¢Eq. (3.8)] and can be neglected.
hus particles of massi>8=2M, will (as well as particles
with m<8m2M, ) be repelled from the brane to the bulk
5 where their self-energy is lower. However, the character of
B. Casem>87°M, the repelling force will differ from the case o
If the mass of the particle is bigger than the scale of<8m°M, . Let me define the Schwarzschild surface as a
gravity M, , | cannot calculate the self-energy by cutting off surface on which/(r,y,y,) = —1/2. When the particle is re-
the Newtonian potential a¢~|v|;1, The reason is that the moved from the brane, the Schwarzschild surface expands
Schwarzschild radius in the bulk is bigger than the inversérom a point [actually, the three sphere of radius,
scaleM, , and at distances shorter than Schwarzschild ra=Mp'(m/Mp)] anisotropically(Fig. 1). After the particle
dius rgs gravity is not weak. In following considerations | reaches a certain value of;, the Schwarzschild surface
will not write negligible corrections of the order ofrl/. crosses the three sphere of radngl that describes the
Let us calculate the self-energy of a 5D black hole bygravity cutoff radiugFig. 2) . This crossing first happens for
approximating the black hole as an object that gravitates vighe value of¢p=0. Up to that point the self-energy and the
Newton’s law at distances bigger than the event horizon force on particle are the same as in the case8m?M, .
>rg. What happens with potential at distances below theAfter that point we cannot considé, self-energy cutoff
event horizon does not influence the energy of the worldistance and the self energy evolves different from the case
outside the horizon. Again | construct the self-energy by asm<8#?M, . Moving the particle further into bulk, the
sembling the black hole at the origin out of infinitesimal Schwarzschild surface grows and takes overNhg sphere
pieces of matter located at infinity. To assemble the pointt larger angles and finally, for some critical valueygf the
massM, | need to bring matter to a cutoff distanté, *, M, sphere becomes completely contained inside the
since the Schwarzschild radius is smaller then the invers8chwarzschild surface. At that point we can say that the

This force will try to push the particle to the bulk where its
self-energy increases in magnitude by the large factor o
(Mp/M,)2.
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FIG. 2. The formation of the black hole hori-
zon in ther —y plane. The horizontal axis mea-
sures distance from the brageand the vertical
axis measures the distance along the brabeth
in units of M. The mass of the particle is taken
to bem=167°M, , i.e., twice the critical mass.
Solid lines represent Schwarzschild surfaces,
dashed lines represent surfaces of three spheres
of unit radius, and masses are represented by
dots. The horizon emerges when the particle is at
y¢=°=0.207 and completely encloses tih&,
sphere one unit farther.

black hole formation is finished and the particle will have dence to be valid everywhere exceptyat0 (world volume

(up to corrections of the order &fl, ) the self-energy of a
5D black hole.

Points where the Schwarzschild surface crossedvihe
sphere forg=0,7 can be expressed from potent{al4)

N : -1,
2M, \ J1-87°M, /m
gmm_\ b0, T
Y&~ T=y§ +M*' (3.9

For m>8m°M, these expressions becomy§ °~27%/m
and yg’:”~ 1M, . Thus the horizon starts forming at
~2m?/m and is formed precisely M, farther. The force
felt by the particle ory,<2m?/m is the same as in the case
m<8m?M, (YoM, <1).

(3.10

1
Fy(Yo<2m?/m)=—m’M, Y.
4

For 2m?/m<y,<1/M, , neglecting terms of orde¥, in
self-energy, force is approximately

71_2
Fy(Yo>2m?Im)~—. (3.11)
Yo

To summarize, fom>872M, , the 5D Schwarzschild ra-
dius is bigger than the cutoﬂ/l;l, and one cannot use the

of the sourcgbecause the source itself is a kinetic term for
the 4D theory. Aty=0, the value of the delta function di-
verges and the 4D kinetic term becomes dominant. The grav-
ity theory in this approachy(#0) becomes equivalent to a
5D gravity in the presence of an infinite three-plane with a
specific mass(charge distribution. In the Newtonian ap-
proximation theory is equivalent to the electrostatic setup of

a charge near the conducting plane. | will use the synﬁ)ol
for the gravitational field and sometimes interchange the
terms mass and charge.

Let us take masm at position (= 0,yo) and look at the
field at position ¢,y). One can ask what kind of charge
distribution on the plane would produce potentiald).

A component of the field in thg direction is discontinu-
ous aty=0 with discontinuity(to a first order in 1/.)

m |yl —(r2+y3)(2r,)

(BB )=
g Y 4m*M3 (r2+y3)?

4.9

Applying the Gauss theorem on the 5D pillbox, as shown in
Fig. 3, we can find the charge distribution on the plane

Newtonian theory to calculate the self-energy of the particle.
Modeling a black hole as an object that gravitates with New-
tonian potential outside the horizon, | calculated self-energy
and estimated the force felt by the particle. As in the case
m<8m?M, particles are repelled from the brane.

IV. CONDUCTOR ANALOGY

In this section | will rederive results of the previous sec-

m

Yo

y

tion for particles withm<8x?M, from a different point of

view. The Lagrangian of our theory can be thought of as the  FIG. 3. Gaussian pillbox for the determination of the effective
Lagrangian for a purely 5D theory with a specific type of charge distributiorp(r,y,) induced by the chargm at position ¢

source localized ag=0. One would expect this correspon- =0y,).
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that would gravitationally repel masses or act as gravitational

V-E=—— p(X,y)—p(r,Yo) dipoles. In cosmological setups the tensionless DGP brane
AMY would gravitationally shield“shadow”) parts of the uni-
verse and could modify cosmological evolution.
_ i m|yo| 4.2
 (174y)? 2mre(r®hyg) V. DISCUSSION
The first term in the expression for charge density?) rep- In previous sections | showed that the particles are re-

resents the distribution of negative charge, sharply peakefelled from the brane that induces the kinetic term. By anal-
aroundr =0, i.e., the projection of the charge position on theogy with an ordinary wall with a tensidri0], we can loosely
brane. Its integral over the volume of the brane is indepensay that the induced kinetic term creates localized energy
dent of y, and equals precisely-m. As y,—0 this term  momentum density on the brain in which repulsive tension
approaches distribution of a point-like chargené(F). The dominates over attractive energy density. Theories with a low
second term in Eq4.2) is a small(notice 1t suppression  scale of gravity predict collider production of black holes.
distribution of positive charge, much less localized then theBecause of the repulsive nature of the brane, black holes
negative charge distribution. In order to find the total inducedproduced in collider experiments would be repelled to the
charge density we should integrate the exact expression olpulk.
tained from the potentigl2.4) that is correct to all orders in The repulsive nature of the brane requires a certain local-
1/r.. The integral of the charge distribution due to the thirdization mechanism for standard model particles. We can dis-
term in Eq.(2.4) can be obtained numerically and is equal totinguish two different cases. In the first case standard model
m. Thus the total charge induced on the brane due to thparticles are entities that cannot exist independent of the
chargem in the bulk is zero, as one would expect. brane. Well-known examples are goldstone modes of broken
Having the charge distribution, we can calculate the intertranslational invariancéelastic waves of the brahemodes
action energy between the mass and the induced distributiodf open strings with end points stuck on the brane, or simply
(“image” distribution of mass—m and the background dis- fermionic zero modes on the soliton-like wall. In this case,
tribution of mass+m). Fory+0 the theory is just the 5D particles feel force but they cannot escape to the bulk. An-
Newtonian gravity so the potential energy of interaction isother possibility is that the standard model particles are en-
(to first order in 1v,) tities that exist independent of the brane. Then, | have to
introduce a localizing potential W that keeps them on the
1 brane. Since on colliders we do not see events in which
W(yo) = §J p(X)V(x)dV particles just disappear, the depth of the localizing potential
AW would have to be bigger than-1 TeV. From the
m p(r,yo)4mr2dr present bound on the size of universal extra dimensions one
== > 3J’ knows that the range of the localizing potential should be
32m My less than 300 GeV11]. Localizing potential can be due to
1 ( 2yo) short ranggcontac} interactions with the matter of the first

2 2
r +y0
1 2

12872

m (4.3  type, or the brane itself. For phenomenologically acceptable
Mi energy densities on the brane, the gravitational attraction
cannot provide localizing potential. The particle localized on
Cutoff effects in this derivation were neglected, so it is un-the brane will feel an effective potential which is a combi-
derstood thay,> €. The result(4.3) coincides with Eq(3.6) nation of short distance localizing potential and repulsive
and gives the same ford8.7). potential. With the potential of deptAW, all particles

Let me summarize what happens in our 5D analog piclighter thanAW will be in stable equilibrium on the brane.
ture. Chargem in the bulk induces negative “image” charge Particles heavier than W would be in a metastable state on
distribution of total charge-m, localized at ther=0, and the brane, because their self-energy in the bulk is roughly
the small uniform background positive mass distribution.their masgEq. (3.8)]. Metastable particles can then tunnel
The total induced charge on the brane is zero. As charge through the barrier into the bulk. The brane can, in principle,
approaches the brang/f—0) image charge distributions be populated with both types of particles. Intrinsically brane
tends to the distribution of a point-like chargem, which  particles would be stabl@vith respect to escape to the bulk
strongly repels mass. Finally, chargem and the image decay. Particles trapped on the brane, on the other hand, can
—m annihilate andm distributes itself uniformly on the decay by escape to the bulk. Upon leaving the brane those
brane. The described process is completely analogous to tiparticles would gain energy of the order of their mésslk
behavior of the charge near the conducting plane. The onlgelf-energy in the vicinity of the brangdistance~1/M,.).
difference is that in electrostatics, charges of the opposit&he recoil effect of the brane would produce stable particles
sign attract and in gravity they repel. Thus massn the  (goldstone modes, zero modesith a total energy of the
bulk is repelled from the brane by its imagem. In this  order of the mass of the particle that escaped to the bulk.
sense the DGP brane acts as a gravity conductor, shieldinthis kind of decay to the bulk would make a missing energy
the fields and giving rise to a repulsive force. One couldsignal on colliders smaller than one expected in a scenario
imagine constructing tensionless objects with this propertywith an ordinary brane.

v
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So far, the discussion has referred to a brane of infinitesi- APPENDIX: INCOMPLETE GAMMA FUNCTION
mal thickness(delta function type brane Real, physical
branes have finite thickness. It would be interesting to see
how the finite thickness affects particle dynamics and if it ? twt
can provide a localization mechanism. Arguments that we Fa(z)=f e t* dt, (A1)
used in the derivation of the repulsive force in the 5D model ‘
apply equally well to branes in space with more than ondt satisfies
extra dimension. To completely understand particle dynam- _
ics, one would certainly like to have an exact relativistic —Fo(z)z—e—, fl“o(z)dz=—e‘z+zl“0(z).
solution. dz z

The incomplete gamma functidn,(z) is defined as

(A2)
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